
Free-Form Deformations
With Lattices of Arbitrary Topology

Ron MacCracken
Kenneth I. Joy

Computer Graphics Research Laboratory
Department of Computer Science
University of California, Davis1
Abstract

A new free-form deformation technique is presented that general-
izes previous methods by allowing 3-dimensional deformation lat-
tices of arbitrary topology. The technique uses an extension of the
Catmull-Clark subdivision methodology that successively refines a
3-dimensional lattice into a sequence of lattices that converge uni-
formly to a region of 3-dimensional space. Deformation of the lat-
tice then implicitly defines a deformation of the space. An underly-
ing model can be deformed by establishing positions of the points of
the model within the converging sequence of lattices and then track-
ing the new positions of these points within the deformed sequence
of lattices. This technique allows a greater variety of deformable re-
gions to be defined, and thus a broader range of shape deformations
can be generated.

1 Introduction

Efficient and intuitive methods for three-dimensional shape design,
modification, and animation are becoming increasingly important
areas in computer graphics. The model-dependent techniques ini-
tially used by designers to modify surfaces required each primitive
type to have different parameters and/or control points that defined
its shape. Model designers had to consider this mathematical model
when making the desired modifications, and shape design could be
difficult – making simple changes to the surface required the mod-
ification of many surface parameters. The process grew more diffi-
cult when local changes, such as adding arbitrarily shaped bumps,
or global changes, such as bending, twisting, or tapering were nec-
essary.

The free-form deformations [5, 6, 9, 19] were designed to deal
with some of these problems. These methods embed an object in a
deformable region of space such that each point of the object has a
unique parameterization that defines its position in the region. The
region is then altered, causing recalculation of the positions based
upon their initial parameterization. If a deformable space can be de-
fined with great flexibility and with few control points relative to

1Department of Computer Science, University of California, Davis CA
95616. Email: fmaccrack,joyg@cs.ucdavis.edu
the number in the surface model, then complex models comprised
of thousands of control points can be deformed in many interesting
ways with very little user-interaction.

Barr [1] first introduced deformations by creating operations for
stretching, twisting, bending and tapering surfaces around a central
axis (x, y, or z). Operations that involved moving many control
points could now be accomplished with the altering of as little as
one parameter. However, this technique limits the possible defini-
tions of the deformable space to that of a single coordinate system
about an axis, and restricts the ways in which the space can be al-
tered - the axis can not be modified and the deformable space can
only be modified by a few parameters.

Barr’s deformations were followed by a more generalized ap-
proach to the problem, the Free-Form Deformations (FFDs) of
Sederberg and Parry [19]. This method imposes an initial deforma-
tion lattice on a parallelepiped, and defines the deformable space as
the trivariate Bézier volume defined by the lattice points. The paral-
lelepiped form of the lattice allows points of an embedded object to
be quickly parameterized in the space of the lattice, and as the lattice
is deformed, the deformed points can be calculated by simple sub-
stitution into the defining equations of the trivariate volume. This
method is widely used because of its ease of use and power to create
many types of deformations with little user-interaction. Griessmair
and Purgathofer [9] extended this technique by utilizing a trivari-
ate B-Spline representation. Although both methods give the user
many controls to alter the deformable space, both Sederberg and
Parry’s FFDs and Griessmair and Purgathofer’s deformation tech-
niques handle only a specific type of space definition, that defined
initially by a parallelepiped lattice.

In order to generate free-form deformations for a more general
lattice structure, Coquillart introduced Extended Free-Form Defor-
mations (EFFD) [5, 6]. This method uses the initial lattice points to
define an arbitrary trivariate Bézier volume, and allows the combin-
ing of many lattices to form arbitrary shaped spaces. Modifying the
points of the defining lattice creates a deformation of space where
one trivariate volume is deformed into another. This extension al-
lows a greater inventory of deformable spaces, but loses some of the
flexibility and stability of Sederberg and Parry’s FFDs: While the
corner control points of the joined lattices are user-controllable, the
internal control points are constrained to preserve continuity; and,
calculating the parameterization of a point embedded in the initial
trivariate volume requires numerical techniques.

A recent deformation technique developed by Chang and Rock-
wood [4] generalizes Barr’s technique in a different manner. In-
stead of defining the space in a free-form manner, Chang’s approach
deals with increasing the flexibility of an axis-based approach by al-
lowing modifications to the axis during the deformation. The tech-
nique allows the user to define the axis as a Bézier curve with two
user-defined axes at each control point of the curve. Repeated affine
transformations using a generalized deCasteljau approach are used
to define the deformable space. This technique is very powerful, in-

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

tuitive, and efficient, but again restricts the ways in which the space
surrounding the curve can be altered.

This paper introduces a further extension to these techniques by
establishing deformation methods defined on lattices of arbitrary
topology. In this case, the deformable space is defined by using a
volume analogy of subdivision surfaces [2, 7, 8]. In these subdivi-
sion methods, the lattice is repeatedly refined, creating a sequence
of lattices that converge to a region in three-dimensional space. This
refinement procedure is used to define a pseudo-parameterization of
an embedded point. As the points of the lattice are modified a de-
formation of the space is created, and the embedded points can be
relocated within the deformed space.

This method has been found to be quite intuitive for the designer
and dramatically increases the inventory of lattices that can be con-
sidered in a free-form deformation. The twists and bends of Barr [1]
and the cylindrical lattices of Coquillart [5] can be easily simulated.
By allowing meshes of arbitrary topology, the continuity problems
of adjoining lattices virtually disappear.

In section 2, we give an overview of the subdivision methods that
are used to define the deformable space from the lattice. In our case
these methods are based upon an extension of the Catmull-Clark re-
finement rules for surfaces [2]. In section 3, we modify the Catmull-
Clark procedure to control the boundary surfaces and curves of the
deformable region. This produces a deformable region that can be
intuitively defined from the lattice. In section 4 we discuss the meth-
ods that give a correspondencebetween a point embedded in the de-
formable space and the sequence of lattices generated by the refine-
ment procedure. In section 5 we present an overview of the com-
plete deformation procedure. Implementation details of the algo-
rithm are discussed in section 6 and results are given in section 7.

2 Defining the Deformable Space from
the Lattice

A lattice L is defined to be a set of vertices fP0;P1; :::;Png and
an associatedsimplicial complex which specifies the connectivity of
the vertices2. A subdivision method applied to a lattice is a function
from the set of lattices into itself. A subdivision method is usually
implemented as a set of refinement rules which define how to gen-
erate the vertices of the resulting lattice, and also how to connect
these new vertices. A set of refinement rules can be repeatedly ap-
plied to a lattice L, creating a sequence of lattices fL1;L2;L3; :::g.
In many cases, this sequencecan be made to converge to a region of
3-dimensional space.

To describe the componentsof a lattice, we will use the following
terms:

� An edge of the lattice is defined by two vertices that are con-
nected in the simplicial complex of the lattice.

� A face of the lattice is defined by a minimal connected loop of
vertices.

� a cell of the lattice is the region of space bounded by a set of
faces.

A control polygon has vertices and edges, a control mesh has ver-
tices, edges and faces, and a control lattice has vertices, edges, faces
and cells. In the bivariate B-spline case, each face of the control
mesh is defined by four vertices, and each vertex of the mesh has
connectivity four (four edges radiating from the vertex). In the
trivariate case, each cell of the control lattice is defined by six faces
and each face by four vertices. Each vertex has connectivity six.

2For consistency, we will refer to a set of points that generates a volume
as a lattice. The set of points generating a surface will be called a mesh. The
set of points generating a curve will be called a control polygon.
figures/fig1.tif

Figure 1: Lattice Structures

We allow lattices of arbitrary topology with the following prop-
erties:

� The lattice is well-connected, i.e. no vertex lies on an edge not
containing that vertex.

� All cells are closed, meaning the faces comprising the cells do
not form any holes. For example, a cube with one face missing
is not a valid cell.

� No two cells of the lattice intersect – that is, we will not con-
sider self-intersecting lattices.

Figure 1 illustrates two sample lattices, one based upon a paral-
lelepiped structure and one based upon a cylindrical structure.

The uniform B-spline curves, surfaces and volumes can be de-
fined by subdivision methods. In the curve case, the refinement
rules were first presented by George Chaikin [3]. Riesenfeld [18]
proceeded to show that Chaikin’s curves were uniform quadratic B-
spline curves. Doo and Sabin [7, 8] extended Chaikin’s method to
uniform quadratic B-spline surfaces and then extended the refine-
ment rules for the quadratic case to meshes of an arbitrary topol-
ogy. Catmull and Clark [2] developed a similar technique for the
uniform cubic B-spline case. These methods have now come into
widespread use in geometric modeling. They have been used for
interpolation and fairing [10], approximation [12], and multireso-
lution design [16].

In this paper, we consider lattices of arbitrary topology and de-
velop a set of refinement rules that subdivide this lattice to gener-
ate a deformable region in three-dimensional space. To generate the
deformable regions, we utilize an extension of the Catmull-Clark
subdivision method to volumes. In the following sections, we sum-
marize the Catmull-Clark refinement rules for the uniform B-spline
volume, along with the extensions of these methods to lattices of ar-
bitrary topology. The complete details of the development of these
refinement rules can be found in [13].

2.1 Subdivision Methods for Trivariate Cubic Uni-
form B-Spline Volumes

Given a control lattice L that defines a trivariate uniform B-spline
volume, the subdivision method generates a new control lattice L1

which consists of the union of all the vertices generated by a binary

figures/fig2.tif

Figure 2: Type-3, 4 and 5 cells generated by the subdivision process.

subdivision of the trivariate volume. These points can be classified
into

1. cell points – these points are the average of the vertices in the
lattice that make up the cell.

2. face points – these points can be written as

F =
C0 + 2A+C1

4

whereC0 andC1 are the cell points of the two adjacent hex-
ahedral cells that contain the face and A is the face centroid
(the average of the vertices that surround the face).

3. edge points – these points can be written as

E =
Cavg + 2Aavg +M

4

where Cavg is the average of the cell points for those hexa-
hedral cells that contain this edge,Aavg is the average of the
face centroids for those faces that contain this edge, andM is
the midpoint of the edge.

4. vertex points – these points can be written as

V =
Cavg + 3Aavg + 3Mavg +P

8

where Cavg is the average of the cell points for each of the
hexahedral cells that contain this vertex, Aavg is the aver-
age of the face centroids for the faces that contain this vertex,
Mavg is the average of the midpoints for the edges that radiate
from the vertex, andP is the vertex itself.

At each subdivision step, a cell point is inserted into the lattice
for each cell according to the first rule, a face point is inserted for
each face according to the second rule, an edge point is inserted for
each edge according to the third rule, and each vertex’s position is
recalculated according to the fourth rule. To reconnect the lattice
after these rules have been applied, we first connect each new cell
point to the new face points generated for the faces defining the cell.
Each new face point is connected to the new edge points of the edges
defining the original face. Each new edge point is connected to the
two vertex points defining the original edge.
figures/fig3.tif

Figure 3: The type-4 cells generated by repeated subdivision.

2.2 Catmull-Clark Volumes

Extension of the above rules to lattices of arbitrary topology is
straightforward, using an extension of the bivariate Catmull-Clark
subdivision strategy[2]. We can classify the points of the refinement
into four types:

1. cell points – these points are the average of the vertices of the
lattice that bound the cell.

2. face points – these points can be written as

F =
C0 + 2A+C1

4

whereC0 andC1 are the cell points of the two cells that con-
tain the face andA is the face centroid.

3. edge points – these points can be written as

E =
Cavg + 2Aavg + (n� 3)M

n

whereCavg is the average of the cell points for those cells that
contain this edge, Aavg is the average of the face centroids
for those faces contain this edge, andM is the midpoint of the
edge. n is the number of faces that contain the edge.

4. vertex points – these points can be written as

V =
Cavg + 3Aavg + 3Mavg +P

8

where Cavg is the average of the cell points for each of the
cells that contain this vertex, Aavg is the average of the face
centroids for the faces that contain this vertex,Mavg is the av-
erage of the midpoints for the edges that radiate from the ver-
tex, andP is the vertex itself.

These refinement rules can be applied to a lattice of arbitrary topol-
ogy creating a new set of vertex points, edge points, face points
and cell points. The reconnection strategy is identical to that of the
trivariate uniform B-spline lattice: the new cell point are connected
to the new face points generated for the faces defining the cell; the
new face points are connected to the new edge points from the edges

figures/fig4.tif

Figure 4: Catmull-Clark Volumes defined by a rectangular and
cylindrical lattice.

defining the original face; and, each new edge point is connected to
the two new vertex points from the original edge.

To describe the cell structure of the subdivided lattice, we define
the valence of a vertexV within a cellC to be the number of edges
in C that contain the vertexV. Given a cell C of a lattice L, con-
sider a vertexV of the cellC of valence n. The refinement process
creates a new cell fromV that contains 2n 4-sided faces, 2 vertices
of valencen and 2n�2 vertices of valence 3 (see figure 2). We call
these characteristic cells type-n cells. After the first subdivision, all
cells can be classified as type-n cells.

In the subdivision process, a type-n cell is refined into two type-
n cells and 2n� 2 type-3 cells. The type-3 cell is a hexahedral cell
with 4-sided faces and 3-valence vertices. After a few subdivisions,
the bulk of the lattice will consist of type-3 cells arranged in a reg-
ular pattern – that of the trivariate uniform B-spline case – except
around a finite number of type-n cells where this regularity is dis-
turbed. For n > 3, the number of type-n cells doubles in each ap-
plication of the subdivision algorithm (see figure 3).

Figure 4 illustrates the Catmull-Clark volumes generated from
the lattices shown in figure 1.

3 Boundary Control of the Subdivision
Volume

Designing a lattice that represents a particular region of space is a
difficult task. The free-form deformations of Sederberg and Parry
[19] were based upon an initial lattice that was formed on a paral-
lelepiped, with the deformable space filling the lattice completely.
In our case, the region of space resulting from applying the trivari-
ate Catmull-Clark subdivision method to an arbitrary lattice does
not conform closely to the general shape of the lattice – shrinking
away from the boundary substantially. In figure 4 for example, the
cylindrical lattice does not refine into a cylindrical region of space.
This feature creates an unusualburden on the designerand limits the
usefulness of the technique.

To solve this problem and create a tool that will construct regions
of space that are intuitive to the designer, we modify the refinement
rules for those areas of the lattice that correspond to boundary sur-
faces, sharp edges, and corner vertices. These rules are summarized
as follows:
figures/fig5.tif

Figure 5: Catmull-Clark volumes with boundary and edge control.
The corner vertices are yellow, the sharp edges are red, the boundary
edges are green and the internal edges are blue.

� Corner vertices are identified as those incident to only one cell
of the lattice. In the refinement procedure, the position of a
corner vertex does not change.

� Sharp edges are those edges joining vertices that are incident
to only one or two cells of the lattice, including cornervertices.
The edge and vertex points along the sharp edges of the lattice
are calculated according to subdivision rules for uniform cubic
B-spline curves[13].

� All other vertex, edge, and face points on the boundary
are generated according to the Catmull-Clark rules for
surfaces[2].

� All internal points are calculatedusing the Catmull-Clark rules
for volumes.

Given a lattice based on a cube, these methods will generate a region
of space that is the cube. In the case of the lattice approximating a
cylinder, the region is flat at either end of the cylinder and rounded
along the length of the cylinder as one would expect. These are
shown in figure 5. The corner vertices are yellow, the sharp edges
are red, the boundary edges are green and the internal edgesare blue.

These techniques have been previously used by Nasri [17] for
Doo-Sabin surfaces, and are similar to the techniquesused by Hoppe
et al. [12] in defining edges, creases, corners and darts on Loop Sur-
faces [15]. When added to the subdivision procedure, these new
rules generate deformable regions of space that closely represent
their lattice.

4 Calculating the Location of Vertices
Embedded in the Deformable Space

Sederberg and Parry [19] impose the initial lattice on a paral-
lelepiped in space and calculate the parameterization of a point
within the deformable spaceby using the local coordinates of a point
within the parallelepiped. The location of the point under the de-
formation is calculated by substituting these local coordinate values
into the defining equation for the trivariate Bézier volume. Coquil-
lart [5] uses a similar method, but numerical iteration is required to

calculate the local coordinate, as her initial lattices are not formed as
parallelepipeds. In both these cases, the cells of the lattice are hex-
ahedral. In the case that the lattice is of an arbitrary topology and
the above subdivision procedure is used, a simple trivariate param-
eterization is not available. Fortunately, the subdivision procedure
itself can be used to establish a correspondence between points in
the deformable region and points in the deformed region.

Given an initial lattice L, the subdivision procedure generates a
sequence of lattices fL1;L2;L3;L4:::;g that converge to the de-
formable region. Each lattice in the sequence induces a partitioning
of the deformable space by its cells. We select a lattice, say Li, that
has the property that the maximum volume of the individual cells
of Li is small. We then identify the cell of Li that contains a given
pointP and assume thatP is deformed to a position within the cor-
responding cell of the deformed lattice – in the same relative posi-
tion in the cell. Whereas this is an approximation, it can be made
arbitrarily close to the actual deformation.

To determine the relative position of a point in the cell, we take
advantage of the fact that after the first refinement all cells are type-
n cells, and most are type-3 (hexahedral). In the type-3 case we can
calculate a trilinear approximation of the position of the point in the
cell and use this trilinear parameterization to adjust the position of
the point in the deformed cell. In the type-n case, we can calculate a
piecewise trilinear approximation, by partitioning the cell into tetra-
hedra, and use this to adjust the position in the deformed cell.

5 The Deformation Process

To deform an object, we follow the 4-step procedure outlined by Co-
quillart in [5]. First, the user must construct the lattice. This is nor-
mally done by utilizing an inventory of lattices and a set of tools to
merge and build new lattices from this inventory. A common tool
is the extrusion tool that takes a mesh and extrudes it in a specified
direction to become a lattice (the cylinder of figure 1 was generated
in this manner.) At the lowest level, the user is allowed to to cre-
ate cells one by one, attaching them face by face to form the lattice.
Boundary surfaces, sharp edges and corner vertices can be marked
automatically (as in section 3), or a manual marking procedure can
determine them. Once the lattice has been constructed, the user must
place the lattice around the object, or the part of the object, to be de-
formed.

When the lattice is oriented properly, it is frozen to the object. At
this time, the lattice is refined, and the number of refinement steps
n is retained.

Each point embedded in the deformable region can be “tagged”
with a pointer to the cell of the refined lattice that contains the point,
and a finite number of parameters that defines its position in the cell.

� For a type-3 hexahedral cell, the parameters consist of a
(u; v;w) triple which defines the point’s trilinear parameter-
ization within the cell.

� For a type-n cell, a new cell point is calculated and the cell is
partitioned into 4n tetrahedra about this cell point, each face
contributing two tetrahedra to the partition (see figure 6). The
parameters consist of an index into the tetrahedra containing
the point and a (u; v; w) triple which defines the point’s pa-
rameterization within the tetrahedra.

Finally, the original lattice is deformed by moving one or more
of its vertices. The deformed lattice is then refined n times and the
tag on each point is used to obtain the corresponding cell in the de-
formed lattice. The vertices of this cell are used to calculate a posi-
tion for the deformed point according to the parameters associated
with the original.
figures/fig6.tif

Figure 6: Partitioning of a type-n cell for approximation. The green
edges represent the original edges of the cell. The blue edges are
generated by the tetrahedral partition.

6 Implementation Details

The data structure holding the lattice is implemented as an exten-
sion of the half-edge data structure for surfaces – much like the
radial-edge structure of Weiler [20]. The primary difference be-
tween halfedge structure for a mesh representing a surface and a lat-
tice representing a volume is that the lattice structure may have sev-
eral faces that contain each edge – the mesh structure will have at
most two. In addition, a real-time deformation algorithm requires
that the sequence of lattices be stored hierarchically. The n sub-
division steps are then executed only once during the initialization
(or freezing) phase of the deformation. Subsequent deformations of
the lattice then require only the recalculation of the refinement rules
for the vertices in lattices Li to Ln , without recreating the lattice
structure. With each subdivision, the size of the data structure nearly
triples and so deformations where the user desires a very small cell
size can be quite memory intensive.

Many numerical algorithms exist to generate the trilinear approx-
imation of a point in a type-3 cell. We have utilized an adaptation
of an algorithm presented by Hamann, et al. [11]. Given a point
P in a cell, we generate a pointP0 as the trilinear point defined by
(1
2
; 1
2
; 1
2
). We then obtain

(u0; v0; w0) = (
1

2
;
1

2
;
1

2
) + (P�P0) ~J

�1

where ~J is the transpose of a local approximate of the Jacobian at
(1
2
; 1
2
; 1
2
) obtained by interpolating the estimates of the Jacobians

at the vertices of the cell. In general,

(ui; vi; wi) = (ui�1; vi�1; wi�1) + (P�Pi) ~J
�1

i

where ~Ji is obtained by performing trilinear interpolation at
(ui�1; vi�1; wi�1) of the Jacobians at the vertices of the cell.

The procedure is repeated until the distance betweenPi andP is
sufficiently small. We found that few iterations were needed as the
algorithm converges quickly and the cells are generally small.

In the case of a type-n cell, we partition the cell into 4n tetrahe-
dra by utilizing the cell point (average of the vertices of the cell). A
simple interpolation function for tetrahedral cells can be written as

P(u; v;w) = P0 + u(P1 �P0) + v(P2 �P0) + w(P3 �P0)

where P0 , P1, P2, and P3, are the four vertices of the tetrahedra.
This can be put into matrix form and solved directly [14].

With this implementation, we have found that the algorithm ex-
ecutes in real time on an SGI Indigo2 Extreme.

7 Results

The primary motivation for moving from the hexahedral topological
lattices of the trivariate Bézier and B-spline representations of [5,
9, 19] was to increase the inventory of available lattices and thus
the number of possible deformations. Figures 7 through 9 show the
results of this algorithm with a variety of meshes and shapes.

Figure 7 exhibits a deformation by a cylindrical lattice, resulting
in a surface deformation in the form of a star.

Figure 8 illustrates a complex lattice in the shape of a barbell.
This lattice was generated by creating a mesh in the shape of a bar-
bell and extruding the shape to form the lattice. The subdivision
methodology automatically handles the continuity between the seg-
ments of the lattice.

Figure 9 shows a deformation applied to the arm of the “mobster”
which causes the arm to lift upward, and the hand to twist toward
the viewer. This is an excellent example of our technique, as it was
necessary to construct the lattice about the appendage that was to be
moved.

8 Conclusions

We have described a new free-form deformation technique that gen-
eralizes previous methods by allowing 3-dimensional deformation
lattices of arbitrary topology. The technique uses an extension of
the Catmull-Clark subdivision methodology to successivelyrefine a
3-dimensional lattice into a sequence of lattices that converge uni-
formly to a region of 3-dimensional space. Deformation of the lat-
tice then implicitly defines a deformation of this region. An under-
lying model can be deformed by establishing positions of the points
of the model within the converging sequenceof lattices, establishing
the cell of the lattice that contains the point, establishing an approx-
imation of the position of the point within the cell, and using this
information to establish the new positions of these points within the
deformed lattice.

This method is very powerful in that it can be applied to virtually
any geometric model, as it directly modifies the vertices that define
the model. The variety of lattices that can be used with this tech-
nique greatly increases the number of deformations that can be ac-
complished.

We have only discussed positional data of the embedded object
in this paper. It is clear that the lattice could hold additional param-
eters. For example, we could store, in the lattice points the parame-
ters of a solid texture. As the lattice is deformed, the texture would
be deformed along with the object.

The careful reader will notice that, for the vertex points of the
Catmull-Clark volume, we utilize the form

V =
Cavg + 3Aavg + 3Mavg +P

8

which does not contain an adjustment for the number of edges ra-
diating from a vertex. We found that the Catmull-Clark surface
methodology directly generalizes to edge points, but not to the ver-
tex points of the refinement rules. It was our purpose to use this re-
finement to generate a partitioning of the deformable space by its
cells, and for this purpose, this calculation appears to work very
well. A detailed theoretical analysis of the continuity of the deriva-
tives of these volumes at the extraordinary points [2, 8]. will have
to be addressed in a future paper.
9 Acknowledgments

We are very grateful to the anonymous referees for their many help-
ful comments on the first version of this paper. We would also like
to thank Bernd Hamann for pointing us toward the simple trivari-
ate schemes that make this algorithm possible. Special thanks go
to Justin Legakis for many useful critiques of the research, and
who assisted us in the production of our final images. The data
for the ”mobster” in figure 9 was contributed via the avalon cite at
www.viewpoint.com. The research reported here was partially sup-
ported by a grant through the University of California MICRO Pro-
gram.

References

[1] Alan H. Barr. Global and local deformations of solid primi-
tives. In Computer Graphics (SIGGRAPH ’84 Proceedings),
volume 18, pages 21–30, July 1984.

[2] E. Catmull and J. Clark. Recursively generated B-spline sur-
faces on arbitrary topological meshes. Computer-Aided De-
sign, 10:350–355, September 1978.

[3] G. Chaikin. An algorithm for high speed curve generation.
Computer Graphics and Image Processing, 3:346–349, 1974.

[4] Yu–Kuang Chang and Alyn P. Rockwood. A generalized de
Casteljau approach to 3D free–Form deformation. In Proceed-
ings of SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994),
Computer Graphics Proceedings, Annual Conference Series,
pages 257–260.

[5] Sabine Coquillart. Extended free-form deformation: A sculp-
turing tool for 3D geometric modeling. In Computer Graphics
(SIGGRAPH ’90 Proceedings), volume 24, pages 187–196,
August 1990.

[6] Sabine Coquillart and Pierre Jancéne. Animated free-form de-
formation: An interactive animation technique. In Computer
Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages
23–26, July 1991.

[7] D. Doo. A subdivision algorithm for smoothing down irreg-
ularly shaped polyhedrons. In Proceedings of the Int’l Conf.
Interactive Techniques in Computer Aided Design, pages 157–
165, 1978.

[8] D. Doo and M. Sabin. Behaviourof recursive division surfaces
near extraordinary points. Computer-Aided Design, 10:356–
360, September 1978.

[9] Josef Griessmair and Werner Purgathofer. Deformation of
solids with trivariate B-splines. In Eurographics ’89, pages
137–148. North-Holland, September 1989.

[10] Mark Halstead, Michael Kass, and Tony DeRose. Efficient,
fair interpolation using Catmull-Clark surfaces. In Computer
Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages
35–44, August 1993.

[11] Bernd Hamann, Donhua Wu, and Robert J. Moorhead II. On
particle path generation based on quadrilinear interpolation
and Bernstein-Bézier polynomials. IEEE Transactions on Vi-
sualization and Computer Graphics, 1(3):210–217, 1995.

[12] HuguesHoppe, Tony DeRose, Tom Duchamp, Mark Halstead,
Hubert Jin, John McDonald, Jean Schweitzer, and Werner
Stuetzle. Piecewise smooth surface reconstruction. In Pro-
ceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29,

1994), Computer Graphics Proceedings, Annual Conference
Series, pages 295–302.

[13] Kenneth I. Joy and Ron MacCracken. The refinement rules
for Catmull-Clark solids. TechnicalReport CSE-96-1, Depart-
ment of Computer Science, University of California, Davis,
January 1996.

[14] David N. Kenwright and Davis A. Lane. Optimization of time-
dependentparticle tracing using tetrahedral decomposition. In
Proceedings of Visualization ’95, pages 321–328. IEEE Com-
puter Society, 1985.

[15] Charles Loop. Smooth subdivision surfaces based on trian-
gles. Master’s thesis, Department of Mathematics, University
of Utah, August 1987.

[16] Mike Lounsbery. Multiresolution Analysis for Surfaces of Ar-
bitrary Topological Type. PhD thesis, Department of Com-
puter Science and Engineering, University of Washington,
Seattle, WA, June 1994.

[17] A. Nasri. Polyhedral subdivision methods for free-form sur-
faces. ACM Transactions on Graphics, 6:29–73, 1987.

[18] R. Riesenfeld. On Chaikin’s algorithm. Computer Graphics
and Image Processing, 4(3):304–310, 1975.

[19] Thomas W. Sederberg and Scott R. Parry. Free-form deforma-
tion of solid geometric models. In Computer Graphics (SIG-
GRAPH ’86 Proceedings), volume 20, pages151–160,August
1986.

[20] Kevin J. Weiler. Topological structures for geometric mod-
eling. PhD thesis, Rensselaer Polytechnic Institute, August
1986.
figures/fig7a.tif

figures/fig7b.tif

figures/fig7c.tif

Figure 7: Deforming a disk with a star-shaped lattice.

High-resolution TIFF versions of these images can be found on the CD-ROM in:
S96PR/papers/joy

Figure 1: Lattice Structures

Figure 2: Type-3, 4 and 5 cells generated by the subdivision process.

Figure 3: The type-4 cells generated by repeated subdivision.

Figure 4: Catmull-Clark Volumes defined by a rectangular and
cylindrical lattice.

Figure 5: Catmull-Clark volumes with boundary and edge control.
The corner vertices are yellow, the sharp edges are red, the
boundary edges are green and the internal edges are blue.

Figure 6: Partitioning of a type-n cell for approximation.
The green edges represent the original edges of the cell.
The blue edges are generated by the tetrahedral partition.

High-resolution TIFF versions of these images can be found on the CD-ROM in:
S96PR/papers/joy

Figure 7: Deforming a disk with a star-shaped lattice.

High-resolution TIFF versions of these images can be found on the CD-ROM in:
S96PR/papers/joy

Figure 8: Deforming a block with a barbell-shaped lattice. Figure 9: Deforming the mobster’s arm.

